Reflection 70B-AI界的新星来袭:深度解析Reflection-Llama3.1-70b模型,揭秘其超强推理能力与自我纠错技术,带你体验AI思维的革命性突破
Reflection 70B-AI界的新星来袭:深度解析Reflection-Llama3.1-70b模型,揭秘其超强推理能力与自我纠错技术,带你体验AI思维的革命性突破
hugging face
https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B
算法测试
https://leetcode.com/problems/text-justification/
推理测试
Which is bigger -- 9.11 or 9.9?
How many Rs are in strawberry?
小A去商店买了90元的东西,但发现自己只带了20元。
商店老板借给他80元,小A用这100元付款后,商店老板找回10元给他。
回家后拿到钱后,小A来到商店把80元还给超市老板。
但超市老板总感觉下A给的少了,请问小A应该给多少钱?
ollama
curl -fsSL https://ollama.com/install.sh | sh
ollama run reflection:70b
👉👉👉如有问题请联系我的徽信 stoeng
🔥🔥🔥本项目代码由AI超元域频道制作,观看更多大模型微调视频请访问我的频道⬇
👉👉👉 ** 我的哔哩哔哩频道 **
👉👉👉 ** 我的YouTube频道 **
👉👉👉我的开源项目 ** https://github.com/win4r/AISuperDomain **
api
https://openrouter.ai/chat?models=mattshumer/reflection-70b:free
curl https://openrouter.ai/api/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENROUTER_API_KEY" \
-d '{
"model": "mattshumer/reflection-70b:free",
"messages": [
{"role": "user", "content": "What is the meaning of life?"}
]
}'
LM Studio
https://huggingface.co/lmstudio-community/Reflection-Llama-3.1-70B-GGUF
curl https://api.deepseek.com/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-9d626022379a49a29e4147f593853732" \
-d '{
"model": "deepseek-chat",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
"stream": false
}'
AutoGen+LlamaIndex
!pip install pyautogen llama-index-vector-stores-chroma llama-index llama-index-embeddings-huggingface llama-index-llms-together
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
from llama_index.llms.together import TogetherLLM
import chromadb
import autogen
from autogen import ConversableAgent
# 创建目录(如果不存在)
!mkdir -p ./documents
# 下载文件到 ./documents 目录
!wget -P ./documents https://raw.githubusercontent.com/win4r/mytest/main/book.txt
def initialize_index():
# 初始化 Chroma 数据库客户端
db = chromadb.PersistentClient(path="./chroma_db")
# 获取或创建一个名为 "my-docs" 的集合
chroma_collection = db.get_or_create_collection("my-docs")
# 创建 ChromaVectorStore 实例
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
# 创建存储上下文
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# 使用 BAAI/bge-large-en-v1.5 嵌入模型
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5")
# 设置全局嵌入模型
Settings.embed_model = embed_model
Settings.llm = TogetherLLM( model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", api_key="sk-" )
# 检查集合是否已存在数据
if chroma_collection.count() > 0:
print("Loading existing index...")
# 如果存在,从向量存储加载索引
return VectorStoreIndex.from_vector_store(
vector_store, storage_context=storage_context
)
else:
print("Creating new index...")
# 如果不存在,从文档目录加载数据并创建新索引
documents = SimpleDirectoryReader("./documents").load_data()
return VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# 初始化索引
index = initialize_index()
# 创建查询引擎
query_engine = index.as_query_engine()
def create_prompt(user_input):
result = query_engine.query(user_input)
prompt = f"""
Your Task: Provide a concise and informative response to the user's query, drawing on the provided context.
Context: {result}
User Query: {user_input}
Guidelines:
1. Relevance: Focus directly on the user's question.
2. Conciseness: Avoid unnecessary details.
3. Accuracy: Ensure factual correctness.
4. Clarity: Use clear language.
5. Contextual Awareness: Use general knowledge if context is insufficient.
6. Honesty: State if you lack information.
Response Format:
- Direct answer
- Brief explanation (if necessary)
- Citation (if relevant)
- Conclusion
"""
return prompt
# 配置LLM(语言模型)
llm_config = {
"config_list": [
# {
# "model": "llama-3.1-8b-instant",
# "api_key": os.getenv("GROQ_API_KEY"),
# "api_type": "groq",
# }
{
"model": "mattshumer/reflection-70b:free",
"base_url": "https://openrouter.ai/api/v1",
"api_key": "sk-or-v1-",
"cache_seed": 42
},
]
}
# 创建RAG机器人代理
rag_agent = ConversableAgent(
name="RAGbot",
system_message="You are a RAG chatbot",
llm_config=llm_config,
code_execution_config=False,
human_input_mode="NEVER",
)
prompt = create_prompt("Show me some samples of Knowledge Integration prompts")
reply = rag_agent.generate_reply(messages=[{"content": prompt, "role": "user"}])
print("\nType of reply:", type(reply))
print("\nContent of reply:", reply)
if isinstance(reply, dict) and 'content' in reply:
print(f"\nRAGbot: {reply['content']}")
elif isinstance(reply, str):
print(f"\nRAGbot: {reply}")
else:
print("\nUnexpected reply format")
Comments